Shortcuts
SISSA Library . Default .
PageMenu- Main Menu-
Page content

Catalogue Tag Display

MARC 21

Host stars and their effects on exoplanet atmospheres: an introductory overview
Tag Description
020$a9783030114527
082$a523.01 (DDC 21.)
099$aOnline Resource : Springer International Publishing
100$aLinsky, Jeffrey L.$d1941-
245$aHost stars and their effects on exoplanet atmospheres$hEB$ban introductory overview$cJeffrey Linsky
260$aCham$bSpringer$c2019
300$a1 Online-Ressource (x, 273 pages)$bill.
440$aLecture Notes in Physics$v955
520$aLike planets in our solar system, exoplanets form, evolve, and interact with their host stars in many ways. As exoplanets acquire material and grow to the final size, their atmospheres are subjected to intense UV and X-radiation and high-energy particle bombardment from the young host star. Whether a planet can retain its atmosphere and the conditions for significant mass loss both depend upon the strength of the host star's high-energy radiation and wind, the distance of the exoplanet from its host star, the gravitational potential of the exoplanet, and the initial chemical composition of the exoplanet atmosphere.This introductory overview describes the physical processes responsible for the emission of radiation and acceleration of winds of host stars that together control the environment of an exoplanet, focusing on topics that are critically important for understanding exoplanetary atmospheres but are usually not posed from the perspective of host stars. Accordingly, both host stars and exoplanets are not studied in isolation but are treated as integrated systems. Stellar magnetic fields, which are the energy source for activity phenomena including high-energy radiation and winds, play a critical role in determining whether exoplanets are habitable.This text is primarily for researchers and graduate students who are studying exoplanet atmospheres and habitability, but who may not have a background in the physics and phenomenology of host stars that provide the environment in which exoplanets evolve. It provides a comprehensive overview of this broad topic rather than going deeply into many technical aspects but includes a large list of references to guide those interested in pursuing these questions. Nonspecialists with a scientific background should also find this text a valuable resource for understanding the critical issues of contemporary exoplanet research.
533$aDigital book.$bCham$cSpringer International Publishing$d2019. -$fLecture notes in physics$nMode of access: World Wide Web. System requirements: Internet Explorer 6.0 (or higher) or Firefox 2.0 (or higher). Available as searchable text in PDF format.
538$aOnline access to this digital book is restricted to subscribing institutions through IP address (only for SISSA internal users)
856$uhttps://doi.org/10.1007/978-3-030-11452-7
Quick Search