Please wait while page loads.
SISSA Library . Default .
PageMenu- Main Menu-
Page content

Catalogue Display

Contributions to Current Challenges in Mathematical Fluid Mechanics

Contributions to Current Challenges in Mathematical Fluid Mechanics
Catalogue Information
Field name Details
Dewey Class 531
Title Contributions to Current Challenges in Mathematical Fluid Mechanics ([EBook]) / edited by Giovanni P. Galdi, John G. Heywood, Rolf Rannacher.
Added Personal Name Galdi, Giovanni Paolo , 1947-
Heywood, John G.
Rannacher, Rolf
Other name(s) SpringerLink (Online service)
Publication Basel : Birkhäuser , 2004.
Physical Details VIII, 152 pages : online resource.
Series Advances in mathematical fluid mechanics
ISBN 9783034878777
Summary Note This volume consists of five research articles, each dedicated to a significant topic in the mathematical theory of the Navier-Stokes equations, for compressible and incompressible fluids, and to related questions. All results given here are new and represent a noticeable contribution to the subject. One of the most famous predictions of the Kolmogorov theory of turbulence is the so-called Kolmogorov-obukhov five-thirds law. As is known, this law is heuristic and, to date, there is no rigorous justification. The article of A. Biryuk deals with the Cauchy problem for a multi-dimensional Burgers equation with periodic boundary conditions. Estimates in suitable norms for the corresponding solutions are derived for "large" Reynolds numbers, and their relation with the Kolmogorov-Obukhov law are discussed. Similar estimates are also obtained for the Navier-Stokes equation. In the late sixties J. L. Lions introduced a "perturbation" of the Navier­ Stokes equations in which he added in the linear momentum equation the hyper­ dissipative term (-Ll),Bu, f3 ~ 5/4, where Ll is the Laplace operator. This term is referred to as an "artificial" viscosity. Even though it is not physically moti­ vated, artificial viscosity has proved a useful device in numerical simulations of the Navier-Stokes equations at high Reynolds numbers. The paper of of D. Chae and J. Lee investigates the global well-posedness of a modification of the Navier­ Stokes equation similar to that introduced by Lions, but where now the original dissipative term -Llu is replaced by (-Ll)O:u, 0 S Ct < 5/4.:
Contents note On Multidimensional Burgers Type Equations with Small Viscosity -- 1. Introduction -- 2. Upper estimates -- 3. Lower estimates -- 4. Fourier coefficients -- 5. Low bounds for spatial derivatives of solutions of the Navier—Stokes system -- References -- On the Global Well-posedness and Stability of the Navier—Stokes and the Related Equations -- 1. Introduction -- 2. Littlewood—Paley decomposition -- 3. Proof of Theorems -- References -- The Commutation Error of the Space Averaged Navier—Stokes Equations on a Bounded Domain -- 1. Introduction -- 2. The space averaged Navier-Stokes equations in a bounded domain -- 3. The Gaussian filter -- 4. Error estimates in the (Lp(?d))d—norm of the commutation error term -- 5. Error estimates in the (H-1(?))d—norm of the commutation error term -- 6. Error estimates for a weak form of the commutation error term -- 7. The boundedness of the kinetic energy for ñ in some LES models -- References -- The Nonstationary Stokes and Navier—Stokes Flows Through an Aperture -- 1. Introduction -- 2. Results -- 3. The Stokes resolvent for the half space -- 4. The Stokes resolvent -- 5. L4-Lr estimates of the Stokes semigroup -- 6. The Navier—Stokes flow -- References -- Asymptotic Behavior at Infinity of Exterior Three-dimensional Steady Compressible Flow -- 1. Introduction -- 2. Function spaces and auxiliary results -- 3. Stokes and modified Stokes problems in weighted spaces -- 4. Transport equation and Poisson-type equation -- 5. Linearized problem -- 6. Nonlinear problem -- References.
System details note Online access to this digital book is restricted to subscription institutions through IP address (only for SISSA internal users)
Internet Site
Links to Related Works
Subject References:
Corporate Authors:
Catalogue Information 48738 Beginning of record . Catalogue Information 48738 Top of page .


This item has not been rated.    Add a Review and/or Rating48738
. E-mail This Page
Quick Search